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Summary—In the type of circuits considered here, the input
power is divided equally between two channels whose outputs are
caused to have a very nearly 90° phase difference over a broad fre-
quency range. Networks suitable for application at low frequencies
which perform the above function have been widely investigated.'—®
This report describes a new type of 90° differential phase shifter
which has a constant resistance input, and which is useful over band-
widths as large as 5:1 in the microwave region.

TaEORY
Basic Phase-Shifting Element
THE circuits to be described employ sections of

coupled-strip transmission lines operating in the
TEM mode as key elements. One such coupled-
strip transmission-line phase-shift element is shown in
Fig. 1. Two parallel-coupled lines of equal length are
connected at one end; ideally this connection should be
of zero length. The unconnected ends serve as the input
and output of a two-terminal-pair network. The fre-
quency behavior of a coupled-line network connected
in this manner, and also that of other related coupled-
line circuits, has been derived by Jones and Bolljahn.?
The equations for the image impedance Z;, and phase
constant, ¢, of coupled lines connected as shown in Fig.
1 are, in terms of the even- and odd-mode characteristic
impedances of the lines and their length,

ZI = \/ZOOZlJey (1)
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where

Zys s the characteristicimpedance of one line to
ground when equal in-phase currents flow in

both lines,

Zy s the characteristic impedance of one line to
ground when equal out-of-phase currents flow in

both lines.
8

Bl is the electrical length of a uniform line of
length ! and phase constant 8.
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Fig. 1—Coupled-transmission-line element with ends connected
and curves of its phase response for three values of p.

From (1) Zr is seen to be a constant independent of fre-
quency. The phase-shift function, ¢, of such a coupled-
line element is plotted against 6, the frequency variable,
in Fig. 1 for three values of p, where p is defined as
p=2Z0./Zo. Such a network element possesses a sufficient
number of independent design parameters to permit its
use in a variety of phase-shift networks. This can be
demonstrated as follows. P

From the orthogonality relations that define them,
it is seen that Zy, and Z,, are‘ndependent quantities.
Hence, the product (Z¢Zo.) and the ratio p=Z./Zo,
can be independently specified. {t then follows, using
(1) and (2), that the image impedance of the coupled-
line network can be chosen independently of its image
phase constant, ¢. Therefore, provided that ¢ can be
properly specified by suitable choices of p and line
length /, and that a power divider can be designed that

4
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is matched at all frequencies, it follows that a network
with a desirable differential-phase response can be ob-
tained by connecting in parallel a coupled-line network
and a suitable length of uniform transmission line. Such
a networlk is described below.

Type-A Network

The most elementary form of such a network, termed
a Type-A network, is shown schematically in Fig. 2,
together with a plot of phase shifts, ¢; through the
coupled portion, and ¢. through the uniform portion.
The characteristic impedance of the length of uniform
line is Zy=Z1, and the outputs of both branches are
assumed to be matched. The input impedance of the
network is Z;/2, a constant independent of frequency.
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Fig. 2—A Type-A network and curves of phase response for
each of its two branches.

The phase shift through the uniform transmission
line, ¢, is represented by the straight line of slope %
through the origin, where % is the ratio of the length of
the uniform line to that of the coupled lines. Inspection
of (2) for phase shift through the coupled-line portion
indicates that ¢; has odd symmetry about 8=nr/2.
Thus a dashed line, also of slope k, drawn through the
point (§=m/2, ¢ =m) as shown in Fig. 2, intersects the
¢1 curve in two other points equal distances from 6 = /2.
It now can be seen that the output phase difference,
A¢p =ds—¢s1, can be made equal to 90° for three desired
values of # by means of (2). For the case illustrated in
Fig. 2, k=3, p=3.00, and Ap =90° at § ==/3, /2, and
27 /3. The output*phase difference at these three values
of 8 will be called Ago. At other points in the interval
7/3<0<27/3 and for a small distance outside this in-

Schiffman: A New Class of Broad-Band Microwave 90° Phase Shifters

233

terval, the phase difference, A¢ will vary from A¢, by
some small amount which is the phase error. A graph of
the theoretical differential phase shift through the
Type-A network of Fig. 2 is shown in Fig. 3. The differ-
ential phase shift is 904+4.8° over a 2.34:1 bandwidih,
as shown. Other values of p yield different values of
maximum phase errors and bandwidths for the Type-A
network. For example, p=2.7 yields a differential phase
shift of 904 2.5° over a 1.95:1 bandwidth.
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Fig. 3—Differential phase response of the Type-A network
shown in Fig. 2.
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Fig. 4—Error-correcting network and its two possible
differential phase responses.

Phase-Error-Correcting Network

It is possible to reduce the maximum phase error of a
Type-A differential-phase-shift network by connecting
another differential-phase-shift network in tandem.
This second network is so designed that Ady=0 and its
A¢ vs 8 curve is approximately the negative of the error
curve of the Type-A network in the band of interest.
Such a network is shown in Fig. 4. It consists of two
entirely separate parts, a section of uniform transmis-
sion line of length 2ml and a coupled-line section of
length ml. It is possible, therefore, to connect the error-
correcting network to the Type-A network in two ways.
Consequently, the former has two A¢ vs 0 curves which
are the negatives of each other, as shown in Fig. 4. In a
given case the parameters m and p of the error-correct-
ing network, and the method of connecting the latter to
the Type-A network must be chosen so that the net
phase error in a given bandwidth is minimized.
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Fig. 5—A Type-B network and its differential phase response.

Type-B Network

A differential phase shifter that was designed as out-
lined above is shown in Fig. 5. In this case, m is set equal
to 3. (A nonintegral value of 7 would destroy symmetry
and almost certainly reduce the bandwidth of a given
network configuration.) Thus, the error-correcting net-
work differential-phase response is zero at §=7/3, 7 /2,
and 27/3; and the resulting combination called a Type-
B network is suitable for an approximately 2:1 band-
width. Equal-ripple response may then be obtained in
the band of interest with two additional points of zero
phase error by properly choosing p; and ps. The subscript
1 applies to the differential-phase-shifting coupled-line
portion and the subscript 2 applies to the error-correct-
ing coupled-line portion. Here again it is possible to
choose various combinations of these parameters to ob-
tain slightly different bandwidths and maximum phase
errors. A natural choice is to have zero phase error at
0 =m/3 and at § =27/3 as in the Type-A network. Since
the error-correcting curve goes through zero at §=7/3
and at §=2m/3, A¢o of the differential-phase-shifting
element is made equal to 90° at these points. Therefore,
p1=3.00 as in the Type-A network described in the pre-
ceding section. By choosing a point midway between
bandedge and bandcenter for complete error cancella-
tion, ps is found to be 1.18 by trial and error, and an al-
most equal-ripple response is obtained. The maximum
phase error is thus 0.7° over a 2.13:1 bandwidth. The
theoretical differential-phase response of this Type-B
network is plotted in Fig. 5.

By shifting the points of zero phase error from § =7 /3
and #=2x/3 and allowing a maximum phase error of
1.2°, the bandwidth can be extended to 2.32:1. For such
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a network, p1=4.10, and ps=1.24. Still greater band-
widths with resulting larger phase errors are possible
with this type of network. Conversely, the maximum
phase error can be reduced well below the 0.7° maximum
of the first example, if a reduced bandwidth is accept-
able, although such configurations have not been in-
vestigated.

Composite networks as described above often can be
made more compact by removing equal lengths of uni-
form transmission line from each branch, without affect-
ing the differential-phase response. Such a reduction in
size is illustrated in Fig. 6, for the Type-B network.

Type-C Network

By reversing the connection of the error-correcting
network, a third type, the Type-C network, is obtained.
In this case, putting m =2 secures error cancellation over
a broader frequency band than does the Type-B network
and preserves the symmetry of the response. For the
error-correcting network, A¢o=0 at f=w/4 and at
6 =3m/4. By arbitrarily setting A¢o=90° for the differ-
ential-phase-shift network at §=r/4 and at 3x/4, we
find by means of (2) that p; =5.83. Three values of p, were
tried to minimize the phase error over as broad a band
as possible. A value of p;=2.35 vielded a 90° differential
phase shifter with a 4 5° error over a 5:1 band. Such a
Type-C network and its theoretical A¢ vs 8 curve are
shown in Fig. 7. Further improvement in the theoretical
performance of this type of network may be obtained
by changing the value of p; a small amount and then
optimizing the value of pa.

Type-D and Type-E Networ ks

Other configurations of differential-phase-shift net-
works employing coupled lines have been investigated.
Type D and its derived Type E are shown in Fig. 8. In
these types, the band center is at 8 =1, instead of at
f=w/2 asin Types A, B, and C. A Type-E network hav-
ing p1=3.0 and p;=1.37 yields a maximum phase error
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Fig. 7—A Type-C network and its differential phase response.
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Fig. 8—(a) Type-D network. (b) Type-E network.

of the order of 2° for a 2:1 band. Since this performance
is poorer than that of the Type-B network which is its
counterpart, Types D and E will not be discussed fur-
ther.

Type-F Network

A more complex phase-shifting element is illustrated
in Fig. 9. It consists of a coupled-line section with two
degrees of coupling along different portions of its length.
If the even- and odd-mode characteristic impedances
are so chosen that

ZOel
ZOez

ZOoz

= 3
ZOol

the image impedance is

Zr = N ZyeZovo, = NV ZoeyLoos,
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Fig. 9—A more complex type of phase-shifting element.
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Fig. 10—A Type-F network and its differential phase response.

and the phase shift, ¢, is

Z002

p1 — tan?{ tan™! [—— tan 02] -+ 61>
ZOol
Z002

p1 + tan? <tan—1 l:—— tan 62] -+- 01>
ZOol

Here the subscripts 1 and 2 refer to the two sections of
the coupled transmission line as shown in Fig. 9. A dif-
ferential phase shifter employing this element, desig-
nated Type F, is shown in Fig. 10. The length of the uni-
form transmission line is 5/. The two portions of the
coupled lines with different degrees of coupling are each
of length I. This equality of lengths is necessary in order
to obtain a differential-phase response that is symmetri-
cal about the center frequency. Such a symmetrical out-
put is desired because it is reasonable to expect that the
useful bandwidth of the network is thereby maximized.
A consequence of making the two coupled portions of
equal length, however, is that Ago=90° at § =m/4 and
at @ =3r/4. This network is suitable for bandwidths of
about 3:1, for this reason.

Three sets of values of the parameters p; and p. for the
two coupled portions have been tried. The values p1
=1.612 and p;=6.25 yield a 3.24:1 bandwidth with a
phase error of +2.8° as shown in Fig. 10.

(4)

¢1 = cos™!
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Comparison of the Various Networks

A summary of the differential-phase-shift network
types and their approximate characteristics is given be-
low in Table I.

EXPERIMENTAL MODEL
Design

A Type-C network was constructed in strip-line for
the 300-1500 mc band, to test the foregoing theory. The
layout of the circuit is shown in Fig. 11. The character-
istic impedance of each branch is 50 ohms; the input
impedance at the 7" junction is 25 ohms, therefore, but
no attempt was made to match the input since the dif-
ferential phase shift is not affected by such a mismatch
provided the tee is symmetrical. Symmetry was main-
tained to the extent that this was possible in the re-
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TABLE I

NETWORK TYPES AND THEIR CHARACTERISTICS

Ratio-Upper Maximum
Type| to Lower Theoretical Remarks
Frequency Phase Error
A 2.0 +2.8° Simplest and most compact
design (Fig. 2)
2.0-2.5 +0.7°-2.0° (Fig. 5 and Fig. 6)
5.0 +5.0 Bulky, most sensitive to me-
chanical tolerances (Fig. 7)
D, E — Excessive Not recommended (Fig. 8)
F 3.2 +2.8° Simpler and more compact
th:;n Types B and C (Fig.
10

Note: the above values of bandwidth and phase error are typical
of each type of network and are not necessarily optimumn.
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Fig. 11—Experimental Type-C phase shifter for the 300-1500-mc band. Nofe: dimensions in inches; all corner bevels 45°,

mainder of the network.

The ground-plane spacing was chosen as one-half inch
and the thickness of the center conductor as 1/16 inch.
The dielectric is air, except for some polyfoam strips
supporting the center conductor. Four polystyrene cyl-
inders and the two connector blocks separate the ground
planes. The width of the center strip of the 50-ohm
characteristic-impedance portion is obtained from de-
sign curves for strip transmission lines'? and the widths
and spacings of the coupled-strip portions of the net-

2 S. B. Cohn, “Characteristics impedance of the shielded-strip
transmission line,” IRE Trans., vol. MTT-2, pp. 52-57: July,
1954,

work are obtained from coupled-strip transmission-
line design formulas!! developed at Stanford Research
Institute by S. B. Cohn.

The three right angle transmission-line bends in each
branch were mitered in a manner known to reduce re-
flections to a very low value. The junctions between the
transmission line and phase shifting coupled-line ele-
ments were similarly mitered, as were the short lengths
of line which connect each pair of coupled lines.

In calculating the required lengths of uniform trans-
mission line and coupled lines the following simplifying
assumptions were made: 1) the uniform line and the
right-angle bends in each branch behave as uniform lines
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of different length; 2) the short lines which connect the
coupled lines are uniform 50-ohm lines whose lengths
can be found by measuring along their centerlines. A
simple analysis then showed that if assumption 2) is
correct, these connecting lines produce a phase shift at
bandcenter which is proportional to their lengths mul-
tiplied by 4/p. All lengths were then calculated for ex-
actly 90° phase difference at bandcenter, which is
900 mc.

Results

The differential-phase output of the experimental net-
work was measured by a substitution method. First
tests shcwed a slightly rising average characteristic in
the A¢ vs frequency curve as seen in Curve B of Fig. 12.
This indicated either that the uniform transmission-line
branch was too long or that the coupled portions were
too short. However, the peaks of the experimental
Curve B were displaced toward the higher frequencies,
as compared with the theoretical Curve A, and this fact
alone indicated that the coupled-line elements were
made too short.

The experimental differential phase shifter was then
adjusted to make the phase difference 90° on the aver-
age, as follows. A straight line was drawn through the
90° point on the ordinate of Fig. 12 so that Curve B
oscillates about this line approximately uniformly. The
slope of this line was then used to calculate the length
by which the uniform-line branch of the phase shifter
must be reduced in order to match the unwittingly
shortened coupled-line portions. Thus the amount cal-
culated is

(137° — 90°)  velocity of light
Slope X wavelength =
360° 1800 mc
= (.86 inch.

The dimensions given in Fig. 11 reflect this adjustment
and Curve D of Fig. 12 is the resultant differential phase
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Fig. 12-—Performance of a Type-C experimental phase shifter.

output. It is seen that the differential phase output oscil-
lates about an average value of 90°, although the maxi-
mum phase error is larger than that predicted.

It is believed that the performance of the experimen-
tal phase shifter could be further improved by compen-
sating for the discontinuities at the input to the coupled
lines and at the connection between coupled lines.

CONCLUSION

The use of coupled transmission-line elements makes
possible the design of broad-band, matched differential
phase-shift networks for the microwave region. The
techniques employed here in the design of 90° differen-
tial phase shifters also may be used to provide any other
amount of differential phase shift over very broad fre-
quency bands.
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